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Abstract

Reactive schema-based navigation is possible in space domains by extending the
methods developed for ground-based navigation found within the Autonomous Robot
Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimen-
sional applications is a straightforward process. The manifold advantages of schema-
based control persist, including modular development, amenability to distributed pro-
cessing, and responsiveness to environmental sensing. Simulation results show the fea-
sibility of this methodology for space docking operations in a cluttered workarea.

1. Introduction

One of the most important aspects of intelligent robotic control, whether teleoperated
or otherwise, is a tight coupling between sensor data and motor action. It is crucial for
the successful real-time operation of a robotic system that incoming perceptions be used as
rapidly as possible. This strategy typically precludes the building of dynamic world models
to reason over. Reflexive navigation provides highly reactive robotic control systems at a
level beneath high-level planning and reasoning.

Space applications for reactive control require reformulation of the techniques developed
for ground-based navigation. On earth, mobile robots typically have three controllable de-
grees of freedom: two for translation and one for rotation. In the micro-gravity environments
of space, six degrees of freedom are present: three of translation and three of rotation (roll,
pitch, and yaw). Navigation is both simplified and complicated by this change; simplified
in the sense that there are more ways too move about in the world, complicated by the
increased search space for solutions and the increased complexity of control.

Our previous work in ground-based navigation, conducted within the context of the
Autonomous Robot Architecture (AuRA), can be readily extended into three dimensional
problem domains. This includes both aerospace and undersea environments. One of the
design goals of AuRA was to ensure domain independence as much as possible. This was
accomplished through the use of modular design for perceptual strategies and motor be-
haviors, sensor and vehicle independence, and techniques for knowledge representation that
are easily generalized. We have successfully demonstrated navigation of a ground-based
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mobile robot in the interior of buildings [2], the outdoors of a college campus (6], and in
manufacturing settings [3].

This paper illustrates how the reactive/reflexive component of the AuRA architecture
can be extended into three dimensional worlds. Other researchers have addressed reactive
navigation for ground-based applications. Brooks’ subsumption architecture [7], Payton’s
reflexive behaviors [12], Kadonoff’s [8] arbitration techniques are several examples of this
navigational paradigm. Our work in motor-schema based navigation [1] also fits into this
category. It is a straightforward extension of our behavioral methodology into this new
domain.

We first review two-dimensional schema-based navigation in order to provide a firm basis
for its extension into three dimensional worlds. The next section describes the modifications
made to the motor schemas to produce 3D navigation. Simulations are then presented
showing the ability of the robot to navigate in a cluttered world and successfully dock with
a workstation. Finally, a summary, conclusions, and discussion of future work completes

the paper.

2. Review of 2D schema-based navigation

Schema-based navigation [1] involves the decomposition of motor tasks into a collection
of primitive behaviors called motor schemas. Each of these schemas produces an individual
velocity vector using an analog of the potential field methodology [9,10,11]. The vector
output of each of these individual motor schemas is summed and transmitted to the robot.
This overall vector constitutes the desired speed and direction of the robot.

Embedded within each of the motor schemas is one or more perceptual schemas that
provide the necessary information for a particular robot behavior. We have used video cam-
eras [6], shaft encoders, and ultrasonic sensors [2] as input sensor devices for the perceptual
schemas. Action-oriented perception is the basis for sensor interpretation. Only the infor-
mation that is required for a particular motor activity is extracted from the incoming data.
This makes computational processing tractable. The use of a divide-and-conquer strategy
for partitioning sensor algorithms based on motor needs, focus-of-attention mechanisms, and
the application of expectation-based perception (both from a priors environmental knowl-
edge and previous sensor data) facilitate rapid response. We have previously described the
relationship of this methodology to psychological and neuroscientific evidence 5]

For 2D ground-based navigation we have specified several motor schemas and tested them
successfully both in simulation and on our mobile robot George [2,3]. Those developed thus
far include the following:

e Move-ahead: Move the robot in a general direction along the ground.
e Move-to-goal: Move the robot towards a recognized goal.
¢ Avoid-static-obstacle: Move the robot away from a detected obstacle.

e Stay-on-path: Keep the robot located on a hallway or road.
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The advantages of schema-based reactive navigation are many. The ability to reflect
uncertainty in perception, the simple mapping onto distributed processing systems, and the
modular design facilitating incremental system growth are a few. These advantages also
extend into our new work on three dimensional navigation described below.

3. Three dimensional schemas

Extending 2D schema-based navigation into three dimensions is a straightforward pro-
cess. All of the schemas itemized above have been reformulated from 2D cartesian space
to produce vectors in three dimensional space. Although the mathematics is a bit more
complex and the computations a bit more costly than for the ground-based navigation, it is
still a very low cost methodology for navigation.

Illustrations for two of the 3D motor schemas are presented in Figures 2-3. Both per-
ceived environmental views and cross-sectional representations of the potential fields are
presented. The schemas that are not shown in figures can be readily envisioned: the avoid-
static-obstacle schema can be viewed as a repulsive sphere instead of a repulsive disk as
shown in Figure 1b; the move-to-goal schema has vectors pointing from all directions to-
wards the observed goal location; the move-ahead schema has identical vectors located at
all locations in 3D space; and the noise schema has random vectors scattered in 3D space
instead of 2D space. Our current formulations for the 3D motor schemas are presented
below.

e Avoid-static-obstacle:

Vmaym'tudcz
0 for d>S
H*G]’or R<d<S
oo for d<R
where:

S = Sphere of influence (radial extent of force from the center of the obstacle)
R = Radius of obstacle
G = Gain
d = Distance of robot to center of obstacle
Viirection = along a line from robot to center of obstacle moving away from obstacle

e Stay-in-channel

Vimagnitude =
P for d > (W/2)
TW%T *Gfor d< !,V-
where:

W = Width of channel
P = Off path gain
G = On path gain
d = Distance of robot to center of channel
Viirection = along a line from robot to center of channel heading toward centerline
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e Move-ahead
Vinagnitude = fixed gain value
Viirection = in specified compass direction

Move-to-goal
Vimagnitude = fixed gain value
Viirection = in direction towards perceived goal

Noise

Vinagnitude = fixed gain value
Vidirection = random direction

Docking

for ballistic component: same as move-to-goal.

for controlled component (inside transition zone):
for coercive zone (outside of approach zone): sum of a linearly
decreasing tangential vector dependent on correctness of orientation
and a constant attractive vector to the dock.
for approach zone: sum of a constant tangential vector and linearly
decreasing attractive vector dependent on distance from the dock.

The actual control of a robot in the 3D domain is considerably more complex than
the ground-based counterpart. This is a direct consequence of the increased number of
degrees of freedom and the difficulty in controlling an object in free flight. Nonetheless the
simulation studies presented in the next section show the success that can be attained if
these engineering problems can be overcome.

4. Simulations

Several simulation runs are shown in Figure 4. These involve variations on a field of
nine obstacles, a channel, and a goal or a dock. In each case, all of the behavioral goals
are satisfied: there are no collisions with any of the obstacles, and where appropriate the
robot remains within the channel and successfully migrates into the approach zone for the
docking operation. Uncertainty in perception is built into this simulation run, with the
robot’s certainty of the presence of a particular obstacle decreasing with its distance from
the obstacle. These examples clearly show that even in a highly cluttered world, reactive
schema-based navigation can be successfully used to navigate a robot.

The first simulation run (Fig. 4a) shows a field containing nine obstacles. The robot
starts at the origin and moves towards a goal on the other side of the obstacle field. One
Move-to-goal schema and from zero to nine avoid-static-obstacle schemas are active
at any one time (depending on the proximity of the root to the obstacles). The robot is
pushed away from the obstacle field while moving towards its goal, completing its mission
successfully.

The same obstacle field and start and goal positions are present in the second simulation
run (Fig. 4b). In this case, however, a stay-in-channel schema has been added. This forces
the robot to negotiate the obstacles within the confines of the specified channel.
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The next simulation (Fig. 4c) contains the same configuration as Figure 4b but with the
goal replaced by a docking schema. The channel is not illustrated in this figure for clarity
but it is present nonetheless. This altered view from the origin looking towards the dock
clearly shows the robot’s path as it moves past the obstacles and safely into the approach
zone of the docking schema.

Figure 4d shows the same simulation environment as that of Figure 4c but without
the stay-in-channel schema. This path should also be compared to Figure 4a (the same
environment but the move-to-goal has been replace with the docking schema).

Finally, Figure 4e shows what occurs when the approach zone for the dock is on the
opposite side of the channel. The robot enters into the controlled zone of the docking
schema after successfully negotiating the obstacle course, and then is coerced to the opposite
side before its final approach to the dock.

5. Summary and conclusions

We have demonstrated that schema-based navigation can be readily extended into three
dimensional robot navigation domains. The advantages of this type of reactive control are

many.
e Schemas are highly suitable for distributed processing.

Their modular construction allows incremental development.
e They are responsive to environmental sensing.
o They can reflect uncertainty in perception.

We believe this work can be readily applied to both autonomous navigation and semi-
autonomous teleoperation in space. By allowing the low-level obstacle avoidance and motor
behaviors to be handled by reflexive sensing mechanisms, a teleoperator can be freed from
the drudgery of the minute details of control and only needs to be concerned with the high-
level intents of the robotic device. This approach can also cope with the large time lags in
communication often found in space applications. The teleoperator can choose the behaviors
that are relevant to a particular task and then let the robot strive, on its own, to satisfy the
operator-specified goals. The fact that navigational snags can be detected through the use of
hard real-time deadlines or the presence of unacceptably low velocities in the absence of goal
attainment enables a teleoperator to be alarmed when these conditions occur. Autonomous
operation, a major goal of our research, can also be developed by integrating planners that
operate with a combination of a priori knowledge in addition to dynamically acquired world
models.

Related work in progress includes the development of 3D path planning techniques based
on the 2D navigational path planning strategies already in use in AURA [4]. The convex
regions used in our “meadow map” for ground-based applications are being changed to con-
vex volumes (“crystals”) for path production in both undersea and aerospace applications.
The A* search algorithms will be modified accordingly for this domain. We are also de-
veloping new visual strategies that are applicable to the multiple perceptual needs of the
docking operator. Work on the development of a complete planning and navigation system
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capable of working in microgravity such as would be found in a space station environment
is underway. The target robot would be capable of performing duties both in the interior
and exterior of the spacecraft.
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